WASTE MANAGEMENT SpecFUEL

40 CFR 241 - Comparison of Antimony and Fluoride

INTRODUCTION

WM submitted in March 2012 a request for a comfort letter determination that SpecFUEL is a non-waste fuel. WM's submission included a comparison of contaminants, as defined in 40 CFR 241.2, in SpecFUEL to traditional fuels (coal, wood, fuel oil and pet coke). EPA has requested that WM further review antimony and fluoride.

Antimony Comparison

Table 1. Comparison of Metals in SpecFUEL to Coal

	SpecFuel Sample Results			Coal						
				Literary Sources OAQPS Database		EPA Letter ²	USGS Coal Database			
	Webst Sweet Edit		Range		Range		E. A. Cetter	0303 008	Range	
	Volatility **	Average	High	High	Average	High	Value	Average	High	
Components					-					
Metals (mg/kg)			1		-	-		-		
Antimony (HAP)	low	29.1	A NEW		1.7		11.1	1.23		
Arsenic (HAP)			51.4	10		6.9			70	
Beryllium (HAP)	low	0.61	0.61	80	8.2	174	8	24.55	2200	
Cadmium (HAP)	law		4-	15	1.9	206	1.353	2.13	18	
Chromium (HAP)	semi	0.60	1.37	3	0.6	19	1.131	0.41	160	
Cobalt (HAP)	low	15.17	20.6	60	13.4	168	15.7	14.02	200	
Lead (HAP)	low	1.09	1.38	30	6.9	25.2	6.512	5.85	180	
Manganese (HAP)	semi low	21.69	45.0	80	8.7	148	14	10.51	1900	
Mercury (HAP)	volatile	38.49	47.2	300	26.2	512	132	41.38	2500	
Vickel (HAP)	low	0.20 2.86	0.28	1	0.09	3.1	2	0.18	63	
Selenium (HAP)	semi	1.15	7.24	50	21.5	730	15.4	14.76	280	
Low-Volatile Metals (mg/kg)	NA CONTRACTOR OF THE PARTY OF T	87.3	1.28	10	3.4	74.3	2.2	2.87	150	
Low-Volatile Metals (mg/kg)		87.3	120		79.8		190.1	103.9		
			128	545		1822			5448	
Total Metals (mg/kg)	100	110.9	COLUMN TO SERVICE SERV		92.6		209.4	117.9		
Total Metals (mg/kg)			176.4	639		2067	19-1		7721	
All 90% UPL Results reported as Normal -= Non-Detect		•• volatility ba	sed on 40 CFR 63.1			2007			1121	

We compared SpecFUEL to three references of coal content information as noted in the table above. Comparisons were made of antimony alone and as a component of the standard groupings of low-volatile metals and total metals. We based our comparisons on the

recommendations in the Agency's December 23, 2011 NHSM preamble (FR Vol 76, No. 247) as cited below.

The existing language provides flexibility for persons to make comparisons on a contaminant by- contaminant basis or on a group of contaminants-by-group of contaminants basis in determining what constituents to compare. (FR Vol. 76, No. 247, pg. 80471)

While persons may satisfy the contaminant legitimacy criterion on a contaminant-by-contaminant basis, comparing groups of contaminants in the NHSM to similar groups in traditional fuels could also be appropriate, provided the grouped contaminants share physical and chemical properties that influence behavior in the combustion unit prior to the point where emissions occur. Volatility, the presence of specific elements, and (FR Vol. 76, No. 247, pg. 80477)

...as it allows a person with a unit that can or does burn similar traditional fuels (e.g., anthracite, lignite, bituminous, and sub-bituminous coal) to group those traditional fuels (FR Vol. 76, No. 247, pg. 80477)

Following the Agency's guidance, we compared groupings of low-volatile metals and total metals. See 40 CFR 63.1219(e) (4): ("...low volatile metal feedrate limits apply to arsenic, beryllium, chromium, antimony, cobalt, manganese, and nickel, combined.").

We reviewed references for coal from the EPA OAQPS data (note that EPA OAQPS provided data from other literary sources and their own database posted by EPA-OSWER November 29, (http://energy.er.usgs.gov/coalqual.htm)

Antimony Comparison Results

Table 1 shows that SpecFUEL antimony content averaged 29.1 mg/kg with a high value of 51.40. The three reference source averages for coal ranged from 1.23 to 11.1 mg/kg, while high values ranged from 6.9 to 70 mg/kg. Given the high value of coal in the USGS database (70 mg/kg) is greater than the high value of SpecFUEL (51.4 mg/kg); we believe that the SpecFUEL antimony content is comparable.

Low-volatile metals comparison: Table 1 shows that the sum of average concentrations in SpecFUEL is 87.3 mg/Kg, while the sum of coal averages across the three coal references are 79.8, 103.9, and 190.1 mg/Kg. The sum of high concentrations in SpecFUEL is 128 mg/Kg while the sum of coal reference high concentrations are 545, 1822 and 5448 mg/Kg. We therefore found the concentration of low-volatile metals in SpecFUEL to be comparable to coal looking at both the average and high concentrations.

<u>Total metals comparison</u>: Table 1 shows that sum of average concentrations in SpecFUEL is 110.9 mg/Kg while the sum of coal averages are 92.6, 117.7, and 209.4 mg/Kg. The sum of high concentrations in SpecFUEL is 176.4 mg/Kg while the sum of coal high concentrations are 639, 2067 and 7721 mg/Kg. Therefore, total metals concentrations in SpecFUEL are comparable to coal for both the average and high concentrations.

Antimony compared to Wood and Biomass Materials

Table 2. below summarizes the comparison of metals within SpecFUEL to wood and biomass materials.

	SpecFue	el Sampl	e Results	Wood and Biomass Materia				
				Literary Sources ¹	OAQPS	EPA Lette		
			Range	Range	1	Range	Value	
	Volatility **	Average	High	High	Average		Value	
Components								
Metals (mg/kg)						-		
Antimony (HAP)	low	29.1			0.9		0.375	
Amonic (HAD)			51.4	26		6		
Arsenic (HAP) Beryllium (HAP)	low	0.61	0.61	6.8	6.3	298	21	
Cadmium (HAP)	low			••	0.3	10	32	
Chromium (HAP)	semi	0.60	1.37	3	0.6	17	8	
Cobalt (HAP)	low	15.17	20.6	130	5.9	340	62	
ead (HAP)	low	1.09	1.38	24	6.5	213	24	
Manganese (HAP)	semi	21.69	45.0	340	4.5	229	38	
Mercury (HAP)	low	38.49	47.2	840	302	15800	6100	
lickel (HAP)	volatile	0.20	0.28	0.2	0.03	1.1	2	
elenium (HAP)	low	2.86	7.24	540	2.8	175	51	
	semi	1.15	1.28	2	1.1	9	66	
Low-Volatile Metals (mg/kg)		87.3			324.7		6290	
ow-Volatile Metals (mg/kg)			128	1567		16842		
otal Metals (mg/kg)		110.9			330		6338	
otal Metals (mg/kg)			176.4	1912		17098		
All 90% UPL Results reported as Normal = Non-Detect d. = No Data		* volatility ba	sed on 40 CFR 63.1			17038		
esources: EPA Letter "Contaminant Concentrations in EPA Letter to Joseph Knapik- International Pa	Fraditional Fuels:	Tables for Com	parison." Novemb	er 29, 2011.			<u> </u>	

Antimony Comparison to Wood and Biomass - Results

Table 2 shows that SpecFUEL antimony concentrations averaged 29.1 mg/Kg with a high value of 51.40. The reference source averages ranged from 0.375 to 0.9 mg/Kg, and the high values

ranged from 6 to 26 mg/Kg. While the high value of SpecFUEL is above the high value of wood and biomass, the low-volatility metals and total metals comparisons are comparable.

Low-volatile metals: Table 2 shows that the sum of average concentrations in SpecFUEL is 87.3 mg/Kg, while the sum of wood and biomass averages are 324.7 and 6290 mg/Kg. The sum of high concentrations in SpecFUEL is 128 mg/Kg, while the sum of wood and biomass high concentrations are 1567 and 16,842 mg/Kg. Therefore, SpecFUEL low-volatile metal concentrations (both average and high concentrations) are comparable to wood and biomass.

<u>Total metals</u>: Table 2 shows that sum of average concentrations in SpecFUEL is 110.9 mg/Kg while the sum of wood averages are 330 and 6338 mg/Kg. The sum of high concentrations in SpecFUEL is 176.4 mg/Kg while the sum of wood high concentrations are 1912 and 17,098 mg/Kg. Therefore, SpecFUEL is comparable on the average and high concentrations to wood.

Antimony compared to Pet Coke

We were unable to compare SpecFUEL antimony concentrations to those of petroleum coke because EPA does not provide comparison data of petroleum coke.

Fluoride Comparisons

Table 3. Comparison of fluoride in SpecFUEL to Coal

	SpecFuel Sample Results		Coal						
	THE STREET		Literary Sources ³	OAQP5 Database ³		EPA Letter	USGS Coal Database		
N .		Range High	High	Average	Range	Value	Average	Range	
	Average				High			High	
Components				-					
lons					\neg		-		
Bromide (mg/kg)	6.27	6.80	n.d.	n.d.	n.d.	n.d.	18.6	160	
Chloride (mg/kg)	2033	2250	n.d.	992	9080	1440	573.3	8800	
Fluoride (mg/kg)	892			64		160		4900	
		1070	n.d.		178		96.5		
Total Halogens (mg/kg)	2931	3327		1056	9258	1600	688	13860	
All 90% UPL Results reported as Normal = Non-Detect n.d. = No Data	** volatility based on 40	CFR 63.1219					000	13800	
Resources: 1: EPA Letter "Contaminant Concentrations 2: EPA Letter to Joseph Knapik- Internation 3: USGS Coal Database; http://energy.er.us	al Paper Products Corporati	for Comparison." Novembon. October 5, 2011.	per 29, 2011.		· · · · · · · · · · · · · · · · · · ·				

Fluoride compared to Coal - Results

Table 3 shows the average concentration of fluoride in SpecFUEL is 892 mg/Kg with a high value of 1070 mg/Kg, while the coal reference averages are 96.5 and 178 mg/Kg. While the high value of SpecFUEL is above the high value of coal, total halides comparisons are comparable as shown below.

<u>Total halides</u>: Table 3 shows that the sum of average concentrations in SpecFUEL is 2931 mg/Kg while the sum of coal averages are 688 and 1056 mg/Kg. The sum of high concentrations in SpecFUEL is 3327 mg/Kg while the sum of coal high concentrations are 9258 and 13,860 mg/Kg. Based on a comparison of high concentrations for total halides, we believe SpecFUEL is comparable to coal.

Fluoride compared to Wood and Biomass Materials

Table 4. Comparison of fluoride in SpecFUEL to wood and biomass materials (wood)

	SpecFuel Sar	Wood and Biomass Materials					
		Literary Sources ¹	OAQPS Database ¹		EPA Letter		
41 11 1		Range	Range	Range		Value	
	Average	High	High	Average	High		
Components					7.5		
lons						n.d.	
Bromide (mg/kg)	6.27	6.80	n.d.	n.d. 259	n.d. 5400	1600	
Chloride (mg/kg)	2033	2250	2600	-	3400		
	892			32.4		490	
Fluoride (mg/kg)		1070	300		128		
Total Halogens (mg/kg)	2931	3327	2900	291	5528	2090.0	
* All 90% UPL Results reported as Normal = Non-Detect n.d. = No Data	** volatility based on 40	CFR 63.1219					

Fluoride compared to Wood - Results

Table 4 shows the average fluoride concentration in SpecFUEL is 892 mg/Kg, while the wood reference averages are 32.8 and 490 mg/Kg. As was the case with coal, the total halides comparisons between SpecFUEL and wood are comparable. Table 4 shows that the sum of average concentrations for total halides in SpecFUEL is 2931 mg/Kg while the sum of average concentrations of total halides in wood are 291 and 2090 mg/Kg for the EPA references. The sum of high concentrations in SpecFUEL is 3327 mg/Kg, and the sum of high concentrations in wood are 2900 and 5528 mg/Kg. Therefore, SpecFUEL total halides concentrations are comparable to those in the wood references.

SUMMARY

Following Agency guidance, we found SpecFUEL concentrations of low-volatile metals, total metals and total halides to be comparable to coal and wood.